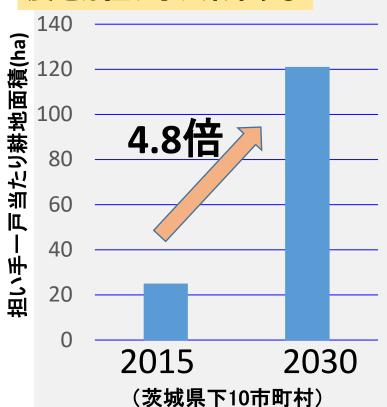
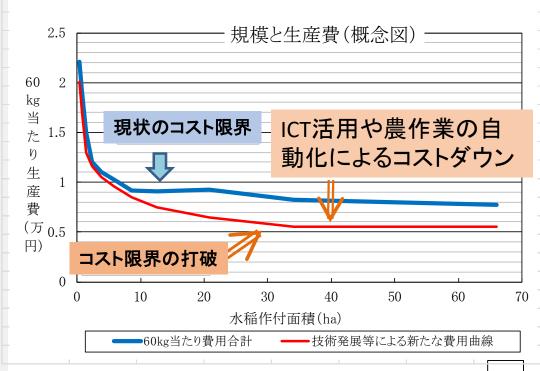


スマート農業と環境との 調和をめざして

- ・背景
- ・農作業機の自動化・知能化
- ・新たな営農管理システム
- ・農業データ連携基盤
- ・これからの課題


農研機構 寺島一男 平成30年11月13日

背景1.農業者の減少と高齢化

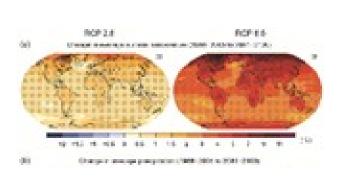


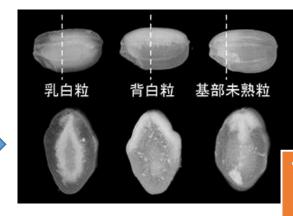
	1965	1975	1985	1995	2005	2010	2017
基幹的農業従事 者数(百万人)	8.44	4.89	3.46	2.56	2.24	2.05	1.51
65歳以上の農業 者の割合(%)	-	-	19.5	39.7	57.4	61.1	66.4

農地は担い手に集中する

規模拡大が収益向上に直結していない

資料:松本ら(2018)


2


背景 2. 温暖化影響の顕在化

気候変動等の影響により減収や品質低下が発生

気象の年次変動と温暖化

コメの 白未熟

高温障害による 品質悪化

病虫害

水稲冷害や高温障害

果物の着色不良

気象変動の予測や、その影響による障害発生の 予知と対応技術の策定が必要

課題解決に向けて

農業者の減少と高齢化や 経営の大規模化・法人化 への対応

気候変動に対応した持続的農業の確立

これらを両立するために

農作業の自動化・知能化、ICTを活用した データー駆動型の農業の確立 -スマート農業の推進-

農業・食品分野におけるSociety 5.0の実現

SDGsへの貢献

スマート農業モデルの実現に向けて

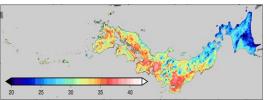
農研機構

農研機構は、研究開発の国家プロジェクトである内閣府SIP「次世代 農林水産業創造技術」の中核的研究機関として、ICT、ロボット技術 を活用した超省力・高生産のスマート農業モデルの実現を目指している。

【スマート農業モデルの主な内容】

①農作業の自動化・知能化

自動走行農機


センシング機能付き農機

②新たな営農管理システ <u>ムの構築</u>

メッシュ気象図

③「農業データ連携基盤」 の構築

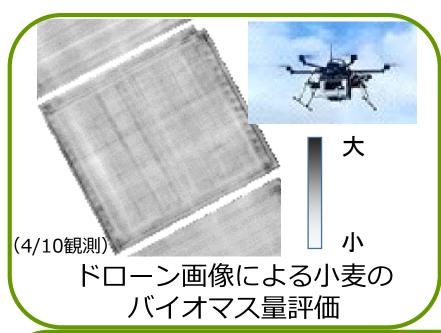
データの「連携」、「共有」、「提 供 |機能を有するプラットフォーム

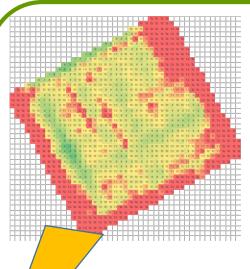
PHYSICAL

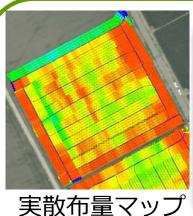
CYBER

農作業の自動化・知能化

	成果	内容と効果	実用化時期				
	ロボットトラクタ (単体)	遠隔監視で自動作業	H30年度予定				
	マルチロボットトラ クタ作業システム	遠隔監視で2台が 自動作業	H30年度 以降早期				
		作業能率160%以上					
S	自動運転田植機	遠隔監視で自動作業	H30年度 以降早期				
		田植作業をワンマン化					
		熟練者並の精度					
	ロボットコンバイン (人搭乗型)	遠隔監視で2台が自動作業	H30年度 以降早期				
M		作業能率170%					
	準天頂衛星対応 の高精度受信機	基準局不要で性能同等 低コスト化(30万円)	H30年度予定 (H29年度モニ ター機販売)				

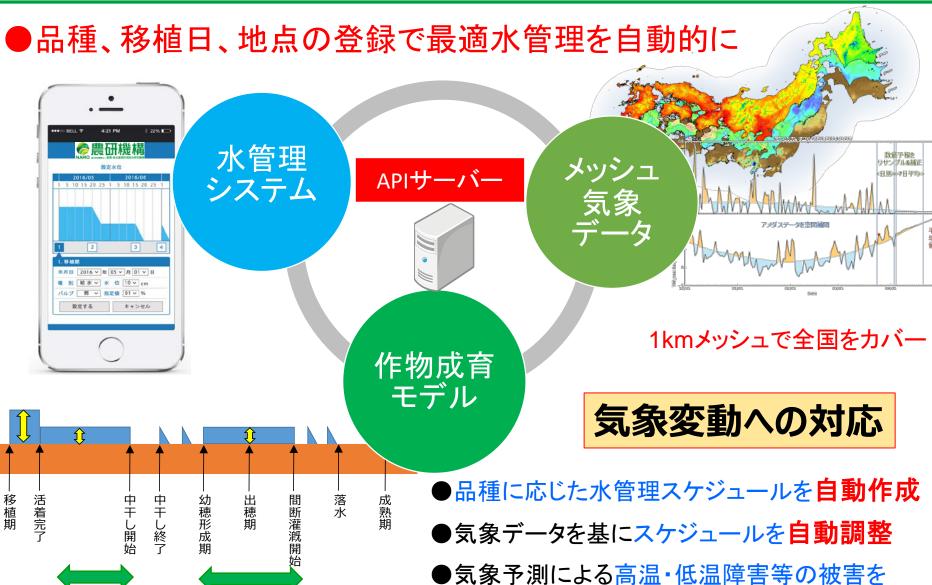

準天頂対応


農作業の自動化・知能化



横芝光サイト(千葉県)における実証研究

計測結果から 独自ルールに 基づき追肥の 施肥量マップ を作成


スマート追肥システムへ 圃場管理システムを通じ て施肥量マップを転送

施肥の削減や合理化

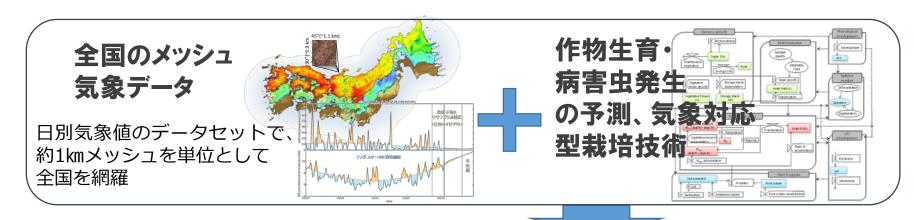
マップベースの可変追肥作業

気象データから自動で調整

抑制する水管理を自動実行

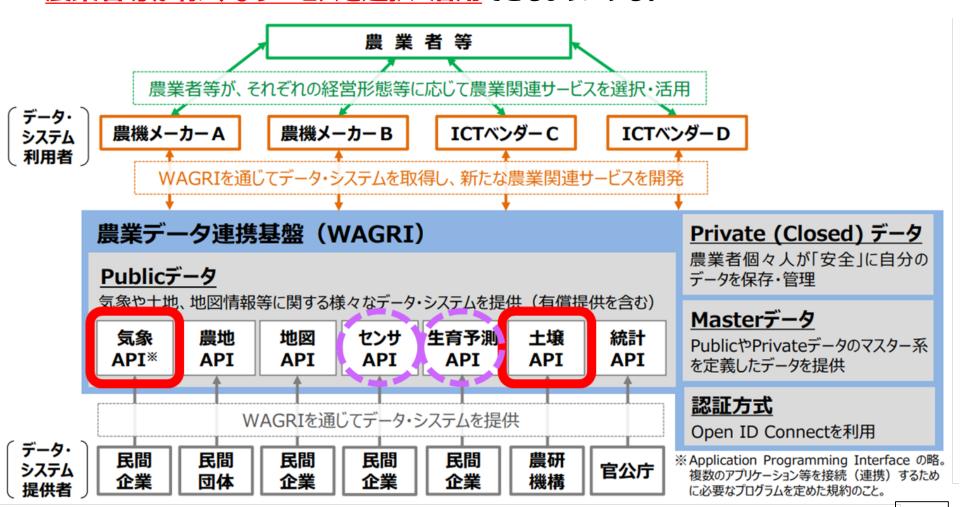
8

新たな営農管理システム-水管理(広域連携)-

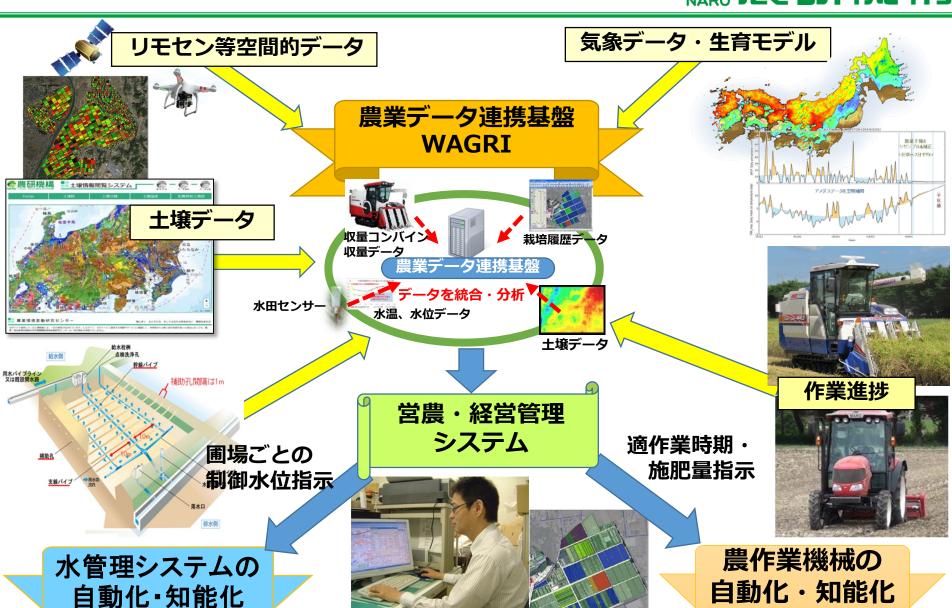




新たな営農管理システム 気象情報と栽培管理支援システム



農業データ連携基盤



○農業データ連携基盤(WAGRI)を通じて**気象や農地、地図情報等のデータ・シス テムを提供**し、民間企業が行う**サービスの充実や新たなサービスの創出を促す**ことで、 **農業者等が様々なサービスを選択・活用**できるようにする。

これからの課題 -データ駆動型スマート農業-

これからの課題:スマートフードチェーン

食用仕向量 8,291万t

- 農業データ連携基盤を強化(データの充実、対象品目の拡大)するとともに、流通、食品製造、輸出振興等と連携
- 生産から流通、加工、消費までデータの相互利用が可能なスマートフードチェーンを創出し、農業におけるSociety5.0 (超スマート社会)を実現する。

生産から流通、加工、消費までデータの相互活用が可能な

「スマートフードチェーン」を構築

食品廃棄量 2,842万t

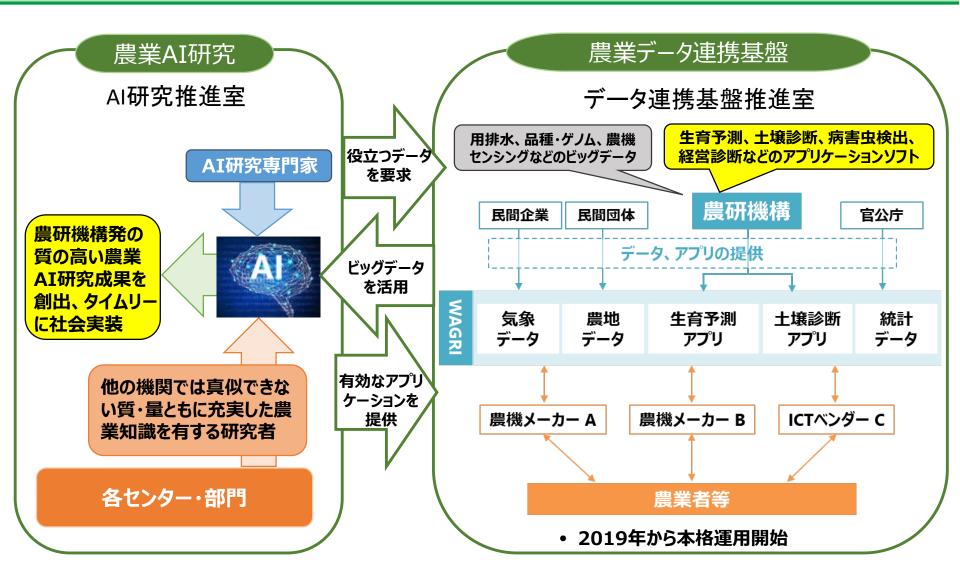
> 食品ロス 646万t

国連WFPによる世界全体の食料援助量の約2倍 環境省・農水省資料

生産 (川上) (生産・収穫・選別) 流通·加工 (川中) (集荷·輸送·貯蔵·加丁)

販売·消費(川下)

スマートフードチェーンの構築により可能となる取組例



資料:農林水産省

スマートフードチェーンの創出

これからの課題:ビッグデータとAI活用

農業情報研究センターにおける農業データ連携基盤と農業AI研究

農業における情報の利活用の推進

作物育種や農機開発とAI、IoTの融合

- ・化学合成農薬の削減
- ・窒素の系外への排出抑制
- ・温室効果ガスの削減・フードロスの減少

生産性向上と持続型農業確立の両立

農業・食品産業における「Society 5.0」の実現

